libNMF - A Library for Nonnegative Matrix Factorization
نویسندگان
چکیده
We present libNMF – a computationally efficient high performance library for computing nonnegative matrix factorizations (NMF) written in C. Various algorithms and algorithmic variants for computing NMF are supported. libNMF is based on external routines fromBlas (Basic Linear Algebra Subprograms), Lapack (Linear Algebra package) and Arpack, which provide efficient building blocks for performing central vector and matrix operations. Since modern Blas implementations support multi-threading, libNMF can exploit the potential of multi-core architectures. In this paper, the basic NMF algorithms contained in libNMF and existing implementations found in the literature are briefly reviewed. Then, libNMF is evaluated in terms of computational efficiency and numerical accuracy and compared with the best existing codes available. libNMF is publicly available at http://rlcta.univie.ac.at/software.
منابع مشابه
A Modified Digital Image Watermarking Scheme Based on Nonnegative Matrix Factorization
This paper presents a modified digital image watermarking method based on nonnegative matrix factorization. Firstly, host image is factorized to the product of three nonnegative matrices. Then, the centric matrix is transferred to discrete cosine transform domain. Watermark is embedded in low frequency band of this matrix and next, the reverse of the transform is computed. Finally, watermarked ...
متن کاملA Projected Alternating Least square Approach for Computation of Nonnegative Matrix Factorization
Nonnegative matrix factorization (NMF) is a common method in data mining that have been used in different applications as a dimension reduction, classification or clustering method. Methods in alternating least square (ALS) approach usually used to solve this non-convex minimization problem. At each step of ALS algorithms two convex least square problems should be solved, which causes high com...
متن کاملA Modified Digital Image Watermarking Scheme Based on Nonnegative Matrix Factorization
This paper presents a modified digital image watermarking method based on nonnegative matrix factorization. Firstly, host image is factorized to the product of three nonnegative matrices. Then, the centric matrix is transferred to discrete cosine transform domain. Watermark is embedded in low frequency band of this matrix and next, the reverse of the transform is computed. Finally, watermarked ...
متن کاملA new approach for building recommender system using non negative matrix factorization method
Nonnegative Matrix Factorization is a new approach to reduce data dimensions. In this method, by applying the nonnegativity of the matrix data, the matrix is decomposed into components that are more interrelated and divide the data into sections where the data in these sections have a specific relationship. In this paper, we use the nonnegative matrix factorization to decompose the user ratin...
متن کاملNIMFA: A Python Library for Nonnegative Matrix Factorization
NIMFA is an open-source Python library that provides a unified interface to nonnegative matrix factorization algorithms. It includes implementations of state-of-the-art factorization methods, initialization approaches, and quality scoring. It supports both dense and sparse matrix representation. NIMFA’s component-based implementation and hierarchical design should help the users to employ alrea...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Computing and Informatics
دوره 30 شماره
صفحات -
تاریخ انتشار 2011